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MULTI-SAMPLE CLUSTER ANALYSIS
USING AKAIKE'S INFORMATION CRITERION*

Hamparsum Bozdogan and Stanley L. Sclove
University of Illinois at Chicago

ABSTRACT

Multi-sample cluster analysis, the problem of grouping samples, is

studied from an information-theoretic viewpoint via Akaike's Information

Criterion (AIC). This criterion combines the maximum value of the likelihood

with the number of parameters used in achieving that value. The multi-sample

cluster problem is defined, and AIC is developed for this problem. The form of

AIC is derived in both the multivariate analysis of variance (MANOVA) model and

in the multivariate model with varying mean vectors and variance-covariance

matrices. Numerical examples are presented for AIC and another criterion

called w-square. The results demonstrate the utility of AIC in identifying the

best clustering alternatives.--'

* Key Words and Phrases: Multi-samp leluster analysis; w-square Criterion;

Akaike's Information Criterion (AIC); MANOVA model; multivariate model

with varying mean vectors and variance-covariance matrices; maximum

likelihood.
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Massachusetts, Amherst, MA, October 16-18, 1981.



MULTI-SAMPLE CLUSTER ANALYSIS
USING AKAIKE'S INFURtATIUN CRITERIUN*

Hamparsum Bozdogan and Stanley L. Sclove
University of Illinois at Chicago

1. Introduction

In this paper, we shall develop Akaike's Information Criterion (AIC) for

multi-sample cluster analysis with common and also with varying variance-

covariance matrices, since often in practice the assumption of equal variance-

covariance matrices is a rather dubious requirement.

The problem of multi-sample cluster analysis arises when we are given a

collection of samples (groups, treatments), to be clustered into homogeneous

groups.

Many practical situations require the presentation of multivariate data

, from several structured samples for comparative purposes and the grouping of

-* the heterogeneous samples into homogeneous sets of samples. Thus, it is

-" reasonable to provide a practically useful statistical procedure that would use

some sort of statistical model to aid in comparisons of various collections of

samples, identify homogeneous groups of samples, telling us which samples

should be clustered together and which should not.

Examples of multi-sample clustering situations are abundant in practice.

We shall give two of these examples later and illustrate numerically.

The concept of multi-sample cluster analysis presented in this paper is

relatively new. It has not been definitively studied before either using the

conventional simultaneous test procedures (STPs) whicn are based on inference

-.+ for the multivariate analysis of variance (NtANOVA) model, or from an informa-

. tion-theoretic viewpoint, which we shall adopt in this paper via Akaike's

*Presented by the first author as an Invited 'aper, Special Session on
Cluster Analysis, 789th Meeting, American Mathematical Society, University of
Massachusetts, Amherst, MA, October lb-18, 1981.

.- +



-K -

Information Criterion (AIC).

Multivariate analysis of variance (MANOVA) is a widely used model for

comparing two or more multivariate samples with a common covariance matrix. In

this model, the likelihood ratio principle leads to Wilks' [17] lambda, or in

short Wilks' A Criterion as the test statistic. It plays the same role in

multivariate analysis that F-ratio statistic plays in the univariate case.

Often, however, the formal analyses involved in MANUVA are not revealing or

informative. Moreover, the test statistics used under this model are derived

under the assumption of equal covariance matrices. If we have a reason to doubt

equality of covariances, then we may first want to test the equality of covari-

ances. In the multivariate case the equality of covariance matrices is

certainly more hazardous. If the covariance matrices are unequal, a bias occurs

in the test for equality of mean vectors. Therefore, for this reason we may

want to first test the equality of covariance matrices instead of immediately

leaping to the MANOVA hypothesis. This is an important option to use in

- clustering groups or samples when we are not willing to assume equal covariance

matrices between the samples or groups in the multi-sample data.

Once the MANOVA hypothesis of equality of mean vectors is rejected at some

* prescribed significance level a, then it is necessary to study in detdil the

" discrepancies between the null hypothesis and the data.

In the statistical literature, in the MANOVA case, there are a variety of

conventional multiple comparison procedures for studying the discrepancies

between the null hypothesis and the data. These test procedures are: Step-down

Methods, Union Intersection Tests, and Simultaneous Confidence Intervals. For

more details on these test procedures refer to Gabriel [7J, Krishnaiah (CIlUj,

[11]), Srivastava [16), and others.
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As noted in Consul [4], the exact distributions of these conventional

test procedures are either unknown or are known for som particular cases

only. Moreover, the problem of finding the percentage points of these statis-

tics has become rather difficult. For these reasons, and for our purposes,

these test procedures have little practical use. Furthermore, thley create

additional problems in terms of how to control the overall error rate 06 since

we can no longer use the same a to discover where the discrepancies between

the null hypothesis and the data might occur.

In the case of testing the equality of covariance matrices, we find our-

selves in the same situation as in the MANOVA model. For this problem also,

there are in the statistical literature several test procedures. For example,

one of the most commonly used tests is b~ox's M4 test despite the fact that it

is very restrictive. For instance, Box's approximation seems to be only goo0d

if each sample size, ng exceeds 20, and if the number of samples, K, and the

number of variables, p, exceed 5. It is also very expensive to compute it on

a high speed computer, even on an IBM4 370.

Once the hypothesis of equality of covariance matrices is rejected at

some prescribed significance level (s, then again it is necessary to study in

detail the discrepancies between the null hypothesis and the data.

Further reviewing the statistical literature, we see that there are no

conventional simultaneous test procedures (STP's) in this case in studying tne

discrepancies between the null hypothesis and the data. UJne can pernaps

construct a sequential likelihood ratio type test, but as is mentioned in

Muirhead ([14], p. 296), the likelihood ratio test in testing the ei~uality of

covariance matrices has the defect that, when the sample sizes n I n 2...nK

are not all equal, it is biased. Therefore, in the multi-sample cluster
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problem with varying parameters, carrying out a sequence of likelihood ratio

tests leaves mhch to be desired in identifying homogeneous groups of samples.

More recently, however, in the statistical literature, we see d liKelihood

based approach, called w-sguare criterion given in Mardia et al. L12J to did

in comparing various collections of samples, identifying homogeneous groups of

samples, and telling which should be clustered together. For normal samples

with equal covariance matrices, the w-square criterion is aefined by

W 2 K nj K

a(1.1- njg(j-lg) 4 -Xg)
a glXjcg

where

Cg a the set of Xi assigned to the gth group, gal, 2,...,K,

Xg - the weighted mean vector of the means in the
-"gtn group, or the cluster set Cg of groups,

Z a W/(n-K), the pooled estimate of E,

K
W I A g is the witnin-samples SSP matrix,

gal

K
n Z r, and

gal

K a the number of groups or samples to be clustered.

If the matrix of Mahalanobis distances Uij given by

023
|E~1

. (XI-Xj)-

. . .. . . . . . -. - - - - -- - - - ~ . . - . . . . . - - . - -
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7

is available, then for computational convenience, w can be written as
a

2 K 2 2
(1.2) a.1/2 J1 n jja ga 9 g

where

Ng.-_ nj.
; X.CC
• "J 9

Thus, when we are given multi-sample data and wish to cluster tne samples,

2
we compute w in (1.1) or (1.2) for some or all of the alternative groupings of

a 2

samples, and choose the minimum of w to be the "best" alternative clustering
a

• of samples. This is appropriate, since maximizing the likelihood implies
2

minimizing w
a 2

Even though the w criterion is a step forward in identifying nomogeneous
a

groups of samples and evaluating multi-sample clusters, it has some disadvan-

tages. For instance, it does not make any allowance for m, the number of

parameters estimated within the model and the subsequent alternative submodels.

It is always zero when the groups or samples are clustered as singletons, as we

shall see later in Section 4. As it is given in (1.1), we can only work with

2
w criterion when we assume equal covarlance matrices.

a
For the above stated reasons, and the problems encountered in the conven-

tional test procedures which we discussed above, in this paper we shall propose

Akaike's Information Criterion (AIC) as a new and unifying proceoure for

evaluating multi-sample clusters, and use it to identify the best clustering

*. alternatives.

In 1971, Akaike first introduced an information criterion, referred to as

I "'",' "-" "-' " " - .'- . . . . . ." , -"- -. i. . . ... . ." . ""-' . . . ". " ' i ' - ._". ,• " _ "
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a Model Identification Criterion or Akalke's Information Criterion (AIC), for

the identification and comparison of statistical models in a class of competing

models with different numbers of parameters. It is defined by

(1.3) AIC (-2)loge(maximized likelihood)

+ 2 (number of free parameters within the model).

It was obtained by Akaike ([2], [3]) based on the recognition that the classi-

cal method of maximum likelihood could be viewed as a method of identification

of a statistical model realized by maximizing an estimate of the generalized

entropy, or the expected log likelihood, of the model being fitted. It esti-

mates minus twice the expected log likelihood of the model whose parameters are

determined by the method of maximum likelihood. When several competing models

are being compared or fitted, AIC is a simple procedure wnich measures the

• ,badness of fit or the discrepancy of the estimated model from the true model

i when a set of data is given. The first term in (1.3) stands for the penalty of

badness of fit when the maximum likelihood estimators of the parameters of the

model are used. The second term in the definition of AIC, on the other hand,

*stands for the penalty of increased unreliability or compensation for the bias

in the first term as a consequence of increasing number of parameters. If more

" parameters are used to describe the data, it is natural to get a larger

.* likelihood, possibly without improving thL true goodness of fit by penalizing

"" the use of additional parameters.

Thus, when there are several competing models, the parameters within the

models are estimated by the method of maximum likelihood and tne AIC-values are

"* computed and compared to find a model witn the minimum value of AIC. This
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procedure is called the minimum AIC procedure. The model with the minimum AIC

is called the minimum AIC estimate (MAICE) and is designated as the best model.

Thus, In applying AIC the emphasis is on comparing the "goodness of fit" of

various models with an allowance made for parsimony.

In Section 2, we shall define the general multi-sample cluster problem.

In Section 3, we shall derive the AIC procedure both for the multivariate

analysis of variance (MANOVA) model, and for the multivariate model with vary-

ing covariance matrices. We shall, In Section 4, give aifferent numerical

examples of multi-sample cluster analysis on different real data sets to demon-

strate our results from applying minimum AIC procedures in different computer

analyses. Finally, in Section 5, we shall present our conclusions and

discussion.

2. The Multi-Sample Cluster Problem

Suppose each individual, object, or case, has been measured on p response

or outcome measures (dependent variables) simultaneously in K independent

groups or samples (factor levels). Let

X1

(2.1) (n xp)=

be a single data matrix of K groups or samples, where .g (ngxp) represents the
K

observations from the 9-th group or sample, g-1,2,...,K, and n = n fl. The
gal

goal of cluster analysis is to put the K groups or samples into k homoyeneous
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groups, samples, or classes where k is unknown, but k<K.

Often individuals or objects nave been sampled from K1 populations. The

data matrix may be represented in partitioned form as above. Let ng represent

the number of individuals in the y-th (random) sample, g=,2•...,K. The ng are

not restricted to being equal or proportional to other ng'S. The total number
K

of observations is n = I ng. Let Xgi be the pxl vector of observations in
gZ1

group g-,2,...,K, and for individual i-1,2,...,ng.

3. Derivation of AIC for Two Multivariate Models

3.1 AIC for the Multivariate Analysis of Variance (MANOVA) Model:

AIC (common E)

We now turn our attention to consider situations with several multivariate

normal samples.

For example, we may have multi-sample data with sample sizes n1, n2 •...•n:'" K

which are assumed to come from K populations, the first with mean vector p and

covariance matrix E, the second with mean vector p2 and covariance matrix _,.,

the Kth with mean vector U K and covariance matrix E. Therefore, throughout this

section we shall suppose that we may have independent data matrices

X1•9-1..."X ' where the rows of Xg(ngxp) are independent and identically distri-

buted (i.i.d.) according to a multivariate normal distribution, Np(eg,.E),

gul,Z,...,K. We may want to compare the K sample mean vectors given that all K

distributions have a common covariance matrix E. This is the well known multi-

variate analysis of variance (MANOVA) model. In terms of the parameters the

MANOVA model is .0-(u p,2,.. , .K) with m-kp+p(p+l)/2 parameters, where k is the

number of groups, and p is the number of variables.

We shall derive the form of AIC for this model. Recall the definition of

AIC from Section 1,

. . . . . ... . . . . .
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AIC - -2 loge L(e) + 2m

a -2 loge (maximized likelihood) + 2m

where m denotes the number of free parameters within the model.

Consider K normal populations with different mean vectors hg, g=-2...,

k...,K, Let Xgi, g-l,2,•.,K; i-l,2,.•,ng, be a random sample of observations

from the g-th population Np(lg,E). If the groups or samples can differ only in

their mean vectors, we can write the multivariate one-way analysis variance

(MANOVA) model as

(3.1.1) Xgi V9 + .gi, g-1,2,.••,K; i-1, 2,...,ng,

where Xgi is the (pxl) response or outcome vector in the g-th

group for the i-th individual or object,

Vg are vector parameters, and

.gi are independent Np(OE) random vector errors.

Thus, the basic null hypothesis we usually are interested in testing is

* gi ven by

(3.1.2) H0 : - - -a

0 -1 -2K

The alternative hypothesis is given by

H Not all K are equal.
1K

Wilks' lambda is a general statistic for handling this problem. Although

there are several other conventional statistics for this purpose, they all can

be viewed as special cases of Wilks' A which we shall not discuss here.
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For notational purposes, we shallI denote by Tthe "total" sum of squares

and products (SSP) matrix, by Wthe "within-group" or "within-sample" SSP

matrix, and by 8 the "between-group" SSP matrix. Hence, it can be shown that

(3.1.3) T *W + 8

where

K n 9  -- --

(3.1.4) K g i - - - -

g-1 i1-I

and

K

with

Xng= Xgi 2 , 2,Q

1 1 K n9  K
I Ia- nng~ . a 9gl jul g i

Therefore, we can present multivariate one-way analysis of variance

(MANOVA) table as follows.



TABLE 3.1. MANOVA TABLE

Source d.f. SSP matrix Wilks' criterion

Between samples K-i B I

iTI

Within samples n-K W -A(p ; n- K; K -1)

Total n-1 T

Now, we derive the form of Akaike's Information Criterion (AIC) for the

MANOVA model given in (3.1.1), subject to the constraint yiven in (3.1.2).

The likelihood function of all the sample observations is given by

K:::(3.1.7) L(ug,_ ;X) -R] L g (V.Kg;Ag),
gaI -

or by

(3.1.8) L= (2w).np/2 K n2
g-1

K ..1 K .1
exp (-,/Ztr I Eg 8g - 1/2tr I ngEg (xg - ,g)(xg - )

gI g-i

K fg . .

where n = ng and Ag = (Xgi - g)(gi -
g= 11

The log likelihood function is
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(3.1.9) l(g,.g;X) a logL(,q,.g;X)

K K .1
- (np/2) log(2%) - 1/2 = nglogIJEg - 1/2tr . g

gul gui

K .1
" l/2tr 7 onag (!g - )( g - eg)'

gui

Since the common covariance matrix is E, the log likelihood function

becomes

(3.1.10) l({g},E:;X) a logL({(g},I.;X)

1 K
(np/2)log(2g)-(n/2)log ILI - 1,2trE T. 1

.. K
- /2trz I ng(g - Eg)(Tg - Eg)' ,

and the raximum-likelihood estimates (MLE's) of sg, and E are

(3.1.11) .g xg , g=1,2,...,K,

*j and

(3.1.12) n W,

K
" where W A

Substituting these back into (3.1.10) and simp~lifying, the maximized log

likelihood becomes...... -.~ g-1
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(3.1.13) MU(ii9 ,E;X) log L((u 1,E;X)

- (np/2)log(Z2i) - (n/2)logln WI - (np/2),

where W is the "within-group" SSP matrix.

Since

(3.1.14) AIC -2 logeL(e) + 2m

where m " kp + _ is the number of parameters, then AIC becomes

(3.1.15) AIC (common E) - nploge(2w) +nlogeln-W + np + 2[kp+ P(P+]1.

Since the constants do not affect the result of comparison of models, we

could ignore them and reduce the form of AIC to a much simpler form

(3.1.16) AIC* (common E) = nlogeWi + 2[kp + -e]

K
where n - n,= the total sample size,

g=l

JWI - the determinant of "within-group" SSP matrix,

k - number of groups or samples compared,

p - number of variables.

However, for purposes of comparison we retain the constants and use

AIC (common E).

q ~.
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3.2. AIC for the Multivariate Model with Varying Parameters:

AIC (varying E and E)

As we mentioned In Section 1, the assumption of equality of covariance

matrices in MANOVA can cause serious problem. For this reason we may want

first test the equality of covariance matrices against the alternative that

not all covariance matrices are equal, given no restriction on the population

mean vectors. Therefore, throughout this section we shall suppose that we may

have independent data matrices X I,X 2,9.,X, where the rows of !g (ngxp) are

independent and identically distributed (i.i.d.) Np(eg, g), g-19,2,...,K. In

terns of the parameters with varying mean vectors and covariance matrices,

the nultivariate model we shall consider is

m2

with m - kp + kp(p+l)/2 parameters, where k is the number of groups, and p is

the number of variables.

Thus, the basic null hypothesis we usually are interested in testing is

giv en by

*. ••(3.2.1) H: " * •

The alternative hypothesis is given by

H1: Not all K covariance matrices are equal.

In nultivariate analysis this is known as the test of homogeneity of

* covariance matrices.

To derive Akaike's Information Criterion (AIC) in this case the log

likelihood function is given by
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(3.2.2) l({ug, EgI;X) log L(({g.g.};X)

K K
- (np/2) log(Zw) - 1/2 l n loglgiz - 1/2 [ n trE'A::gi gg g-i g -g -g

K
-1/2 g1 flg(:g - g)'(ig v g)

The MLE's of Vg and Ig are

(3.2.3) g Xg g,2,...,K,

and

(3.2.4) jg Ag/ng.

Substituting these back into (3.2.2) and simplifying, the maximized log

likelihood becomes

(3.2.5) l(( g,lg;X) log L({(g,Eg};X)

K .1
(np/2)-og(2w) 1/2 n logIn A gJ- (np/2).:!~~ ~~~ ~~ -9 n/)o(2) I2 ,n

Since

(3.2.6) AIC u -2 logeL(e) + 2m

where m * kp + kp(p+l)/2 is the number of parameters, then AIC becomes

.o . . .- " ,.
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K .1
(3.2.7) AIC(varying ,. and z) nplog (2s) + I nglog Ing A gI + np

e gal e

+ 2[kp + kp(p+l)/2].

Since the constants do not affect the result of comparison of models, we

could ignore them and reduce the form of AIC to a much simpler form

K
(3.2.8) AIC*(varying p and E) - inglogIAg1 + 2[kp + kp(p+1)/2],

where ng - sample size of group or sample g-l,2,...K,

IigI a the determinant of sum of squares and cross-products (SSCP)

matrix for group or sample g-l,2,...,K,

k - number of groups or samples compared, and

p - number of variables.

However, for purposes of comparison we retain the constants and use AIC given

by (3.2.7).

4. Numerical Examples of Multi-Sample Cluster Analysis on Real Oata Sets

In this section we shall give two different numerical examples of ulti-

sample cluster analysis, cluster the samples, and choose the best clusterings

by using Akalke's Information Criterion (AIC) as derived in Section 3.1 and

3.2. In example 4.2 we shall also present the numerical results of using the

w-square criterion as an alternative approach. We snail briefly discuss the

relative merits of AIC over w-square criterion. One should note that these

criteria are qualitatively and quantitatively different.

Our computations were carried out for all tne examples we shall present

here on an IBM 4341, configured as a 370, by using a newly developed
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statistical library software by the first author for multi-sample cluster

analysis using AIC, called MSCA.AIC.

We shall illustrate our results first on the Fisher [5] iris data.

Example 4.1. Clustering of Irises by Groups: The iris data set is composed

of 150 iris species belonging to three groups or species, namely Iris setosa

(S), Iris versicolor (Ve), and Iris virginica (Vi) measured on sepal and petal

length and width. Each group is represented by 50 plants.

This data set has been quite extensively studied in classification and

cluster analysis since it was published by Fisher [5], and still today, is

being used as a "testing ground" for classification and clustering methods

proposed by many investigators such as Friedman and Rubin [6], Kendall L81,

Solomon [15], Mezzich and Solomon [13], and many others, including the present

authors.

For each of the 150 plants we already know the group structure of the

iris species, namely K-3 groups or samples. Even though the two species, Iris

setosa and Iris versicolor were found growing in the same colony, and Iris

virginica was found growing in a different colony, Fisher reports in his

linear discriminant analysis the separation of I. setosa completely from I.

versicolor and I. virginica. Since then other investigators have shown

similar results in their studies such as the ones we mentioned above.

With this in mind, we cluster K=3 samples (species) into K-1,2, and 3

groups on the basis of all the four variables. We obtain in total five

possible clustering alternatives. (In general, the total number of

possibilities is a Stirling Number of the Second Kind; see, e.g., Abramowitz

and Stegun [1]). Denoting I. setosa by S, I. versicolor by Ve, and

S.I. -,irginica by Vi, we have (S) (ye) (Vi), (S, Ve) (VI), (S, Vi) (re), (Ye, Vi)(S),

. .* . ** - - -
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and (S, Ve, Vi) as the possible clustering alternatives. Using the MANOVA model

and the multivariate model with varying parameters discussed in Sections 3.1 and

3.2 as our underlying models for clustering these three iris species, we obtained the

following results.

TABLE 4.1. THE AIC'S FOR IRISES BY GROUPS ON ALL VARIABLES UNDER MANOVA MOUEL

Alternative Clustering nloge(2, )  nlogejn-WJ

gew lo*nI np k 2m AIC (commton E)

1 (S) (Ve) (Vi) 1,102.724 -1,504.2 6 3 44 242.b24a
2(, Ve) (Vi) 1,102.724 -1,08599 600 2 J 36 62.824
3 i Vi) Ve 1,102.724 988.39 600 2 36 75U.334
4 (ye, Vi) (S) 1,102.724 : 1,299.6 600 Z 36 439.124b
5 (S, Ve, Vi) 1,102.724 - 941.73 600 J_ 1 28 788.994

n = 150 plants, p - 4 variables

m - kp + p(p+l)/2 parameters

AIC (common z) - nplog (2w) + nlogeJn-1WJ+ np + 2m

aFirst Minimum AIC

bSecond Minimum AIC

TABLE 4.2. THE AIC'S FOR IRISES BY GROUPS UN ALL VARIABLES UNUER THE MUOEL WITH
VARY ING PARAMETERS

Alternative Clustering nploge(2w) K n 1Oge~ng-lg np k2m AIC (varying
g-l g I and E)

1 (S) (Ve) (Vi) 1,102.724 -1,653.895 600 3 84 132.829a
2 (S, ye) (Vi) 1,102.724 -1,251.675 600 2 56 507.049
3 (S, Vi) (Ve) 1,102.724 -1,144.480 600 2 56 614.;44

i 4 (Ve, Vi) (S) 1,102.724 -1,463.770 j 600 j 2 *6 294.9b4D
5 (S, Ve, Vi) 1,102.724 - 941.580 bOUi 1 28 769.144

n a 150 plants, p a 4 variables

m a kp + kp(p+l)/2 parameters
K

AIC(varying e and E) - nploge (2w) + Z nglogejn - 1  gl + np + Zm
g 9

aFirst Minimum AIC

bSecond Minimum AIC

. ' -'-. . . ." . -, • -,',- . . ., , -- • - - "-" --.- .,
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Looking at Tables 4.1 and 4.2, we see that, using all four variables

simultaneously under both models, the MAICE clustering is (S) (re) (Vi). This

indicates that indeed there are three types of species. Not surprisingly, the

the second minimum AIC occurs at the alternative submodel 4 (Ve, Vi) (S),

under both models, telling us that if we were to cluster any one of the two

iris groups, we should cluster I. versicolor and 1. virginica together as one

homogeneous group, and we should cluster I. setosa completely separately. We

note that the AIC values under submodel 2 and 3 are quite large indicating the

inferiority of these submodels. We can see the effect of clustering I. setosa

with I. versicolor in submodel 2, and also with I. virginica in submodel 3,

by comparing the difference of AIC's in these submodels with that of submodel 4

in which I. versicolor and I. virginica were clustered together and I. setosa

was clustered as a separate cluster on its own. According to AIC, we never

cluster three iris species as one homegeneous group (submodel 5). Again by

comparing the differences of AIC's of suomodel 5 with that of submodels 4, 3,

and 2, respectively, we can measure the amount of heterogeneity contributed by

I. setosa, I. versicolor, and I. virinica, respectively, in each clustering

alternative under the MANOVA model and the multivariate model with varying mean

vectors and covariance mtrices. The larger this difference, the greater the

heterogeneity or separation of that group or sample from that of homegeneous

groups or samples in each clustering alternative.

In comparing the AIC's in Tables 4.1 and 4.2, we further notice that

AIC (varying p and E) values are much less than the AIC (common E) values for each

of the clustering alternatives except for the last clustering alternative (i.e.,

alternative 5) in clustering the iris groups or species. Since according to tne

definition of AIC, the model with the minimum AIC is chosen to be the best model,
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then the above results suggest that wren we are clustering iris data, and in

general, we should use different covariance matrices rather than using equal

covariance matrices.

We now present our results on the iris data by using the w-square

-criterion given by (1.1) in Section 1, when we assume equal covariance matrices

* between the iris groups or species. We should note here that in w-square

* criterion given by (1.1) and in Mardia et al. ([12], p. 367), the estimated

pooled-within groups covariance matrix of E is computed only once across all

the groups or samples to be clustered regardless of the number of clustering

alternatives. In our version of w-square criterion we follow the same proce-

dure, but we recompute the estimate of E in each clustering alternative when we

vary the number of clusters of groups or samples, K, when we are given, K, the

* number of groups or samples to be clustered. We do this both under the assump-

- tion of equal and separate covariance matrices between the iris groups. Tnere-

. fore, our numerical values on w-square criterion are quite different then the

original w-square criterion given in Mardia et al. [12, despite the fact that

*we get the same results.

We give the computational results as follows.

2
TABLE 4.3. THE VALUES OF wa FOR IRISES BY GROUPS UN ALL VARIABLES

Aeav 2  b 2 c
Alternative Clustering w (common r (common Z) w (varying _)

ao a a

1 (S) ( v e) ( V i) * * *

2 (S, Ve) (Vi) 2246.6046 137.9722 94.4149
3 (S. Vi) (Ve) 4484.6178 142.3345 96.07U6
4 (Ye, Vi) (S) 430.0267** 109.5511 * 76.822
5 (S, Ve, Vi) 4774.1661 175.291 175.2u9.

.. . .: - .. .-- - - - - -
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n 150 plants, p 4 variables

a 2
Original w given in (1.1)

a
bO Our version of w2

a

*w cannot be computed (always equal to zero)
a

**Minimum of w2

a

Hence, we interpret the results in Table 4.3 in the same manner as we did
2

for AIC's. Wle see that at the alternative submodel 1, w cannot be computed and
a

is always equal to zero when the iris groups are clustered as singletons. This

is always the case in general. Certainly this is a definite disadvantage of w
a

as compared to AIC which has a value even if the iris groups are clustered as

singletons, so that AIC can aid us in determining and understanding the amount

of heterogeneity or separation of the groups on a unique scale. The minimum of
* 2

w a occurs at the alternative submodel 4, telling us again that, if we were toa
cluster any one of the two iris groups, we should cluster I. versicolor and

I. virginica together as one homogeneous group, and we should cluster 1. setosa

completely separate as one heterogeneous group.

In short, w-square criterion gives the same results as AIC does, but as we

mentioned in Section 1, it does not make any allowance for m, the number of

parameters estimated within the clustering alternatives. AIC makes such an

allowance to achieve a parsimony when we compare "the goodness of fit" of vari-

ious models as we do in comparing different clustering alternatives. W-square

criterion is short of having this important feature. Also as we saw, wnen we

have singleton clusters, it cannot be computed.

*i............................... .-- - .. -. . ..-
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Therefore, in our next example, we shall only give our results on AIC,

since our purpose is to introduce AIC in this paper as a new approach to be used

in evaluating multi-sample clusters.

Example 4.2. Clustering Graduate Students by Their Classification G~roups:

A data set for applicants to admission to a Graduate School of Business given in

Johnson and Wichern ([9], p. 528) is composed of data for 85 applicants who were

classified by the admissions officer as Admit (A), Not Admit (NA), and Borderline (8),

based on undergraduate grade point average (GPA) and graduate management aptitude test

(GNAT) scores. The group sizes are nI = 31, n2 - 28, and n3-26 applicants.

With this in mind, we cluster K=3 groups of applicants into k-1,2 and 3 homoge-

neous groups on the basis of the two variables. Using the r4ANOVA model and the multi-

variate model with varying parameters, our results are as follows.

TABLE 4.4. THE AIC'S FOR APPLICANTS BY THEIR CLASSIFICATION GROUPS UNDER
MANOVA MODEL

* Alternative Clustering nloge(2w) nlogeln-1WJ np k I 2m AIC :comnon )

1 (A) (NA) (8) 312.4391 406.1716 170 3 18 9U6.61U7a
2 (ANA) (B) 312.4391 566.7477 170 2 14 1063.1868
3 (A,B) (NA) 312.4391 491.7043 170 2 14 988.1434c

I4 (B,NA) (A) 312.4391 474.0420 170 2 14 97U.48 lib
5 (A, 8, NA) 312.4391 581.9931 17U I 1lU IU74.432Z

n - 85 applicants, p - 2 variables

m * kp + p(p+l)/2 parameters

AIC (common E) - nploge(2 ) + nlogeln-'Wl+ np + 2m
L: aa First Minimum AIC

b
Second Minimum AIC

c
" CThird Minimum AIC
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TABLE 4.5. THE AIC'S FOR APPLICANTS BY THEIR CLASSIFICATION GOUPS
UNDER THE MODEL WITH VARYING PARAMETERS

K

Alternat'ivel Clustering Inloge(2r) i nfglOgelng -.gI np k I2m AI (vring ~I I (vary
I (A) (NA) (B) 1 312.4391 388.7472 I170 3 0 9U1.1863a
2 (ANA) (B) 312.4391 509.4198 170 2 11.85d93 (A,.8) (NA) 312.4391 480.2378 170 2 20 982.6769c

4_____ (BNA) (A) 312.4391 465.7116 I170 2 U 968.lbOlb5 (A, B, NA) 312.4391 581.9931 170 1 10 1074.4322

n - 85 applicants, p = 2 variables
m - kp + kp(p+1)/2 parameters

K
AIC - (varying u and E) nploge(21) + I n logeln AgI + np + 2m
a g=19 9
First Minimum AIC
b
Second Minimum AIC

C

Third Minimum AIC

Hence, looking at Tables 4.4 and 4.5, we see that, under both models, the first

minimum AIC occurs at the alternative submodel 1, that is, when (A) (NA) (B) are all

clustered separately. This indicates that indeed there are three groups of applicants.

Therefore, the MAICE is submodel 1. The second minimum AIC occurs at the alternative

submodel 4 again under both models, telling us that if we were to cluster any one of

the two groups, then we should cluster Borderline (B) and Not Admit (NA) yroups

together as one homogeneous group, and we should cluster Admit (A) group completely

separate as one heterogeneous group. On the other hand, if we want to make a third

choice, then the third minimum of AIC occurs at the alternative submodel 3, indicating

to us the closeness of the Admit (A) group to the Borderline (B) group as one homoge-

neous cluster, and leaving Not Admit (NA) group on its own as a singleton cluster.

*Therefore, this way, we can check the significance of each of the the clustering
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* alternatives in the decision making process. In this example, we also never

* cluster the three groups as one homogeneous group (submodel 5).

In comparing the AIC's in Tables 4.4 and 4.5. for this example we also

notice that, AIC (varying V and E) values are less than the AIC (commnon E)

values for each of the clustering alternatives except for the last clustering

alternative (i.e., alternative 5) in clustering the applicant groups. These

* results suggest that we should use different covariance matrices. However,

* the values of AIC (varying Ba and E) and AIC (common E) are significantly

closer to one another that if we were to assume equal covariance matrices

* between the applicant groups a priori, it would not have been a dubious

* assumption for this particular data set.

Thus, it should be noted that via AIC we can now easily check the validity

* of our assumptions in terms of using equal covariance matrices as opposed to

separate covariance matrices in a particular data set which is important in the

multi-sample clustering situation, and in general.

5. Conclusions and Discussion

From our numerical results in Section 4, we see that AIC and consequently

- minimum AIC procedures can indeed successfully identify the best clustering

* alternatives when we cluster samples into homogeneous sets of samples both in

the MANOVA model and the multivariate model with varying covariance matrices.

* We can measure the amount of homogeneity and heterogeneity in clustering

* samples. We can determine a priori whether we should use equal or varying

* covariance matrices in the analysis of a data set.

The fact that AIC does not require the table look-up, which is the case in

conventional procedures, adds to the importance of the results obtained. This
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is one of the important virtues that AIC breaks away from conventional proce-

dures which try to test whether a parameter Is "significant" or not using a

significance level a which is essentially arbitrary. The other Important

virtue of AIC is that the penalty represented by the term 2 x (number of free

parameters) clearly demonstrates the necessity of choosing a class of models,

at least one of which will be able to provide a good approximation to the

distribution of data without adjusting too many parameters.

Thus, in concluding, we see that the use of AIC shows how to combine the

information in the likelihood with an appropriate function of the number of

parameters to obtain estimates of the information provided by competing

alternative models. Therefore, the definition of MAICE gives a clear

formulation of the principle of parsimony in statistical model building or

comparison as we demonstrated by numerical examples. And MAICE provides a

versatile procedure for statistical model identification which is free from

the ambiguities inherent in the application of conventional statistical

procedures.
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